Saturday, January 19, 2008

Remote Sensing Tutorial

Sensor Technology; Types of Resolution

So far, we have considered mainly the nature and characteristics of EM radiation in terms of sources and behavior when interacting with materials and objects. It was stated that the bulk of the radiation sensed is either reflected or emitted from the target, generally through air until it is monitored by a sensor. The subject of what sensors consist of and how they perform (operate) is important and wide ranging. It is also far too involved to merit an extended treatment in this Tutorial. However, a synopsis of some of the basics is warranted on this page. A comprehensive overall review of Sensor Technology, developed by the Japanese Association of Remote Sensing, is found on the Internet at this mirror site. Some useful links to sensors and their applications is included in this NASA site. We point out here that many readers of this Tutorial are now using a sophisticated sensor that uses some of the technology described below: the Digital Camera; more is said about this everyday sensor near the bottom of the page.

Most remote sensing instruments (sensors) are designed to measure photons. The fundamental principle underlying sensor operation centers on what happens in a critical component - the detector. This is the concept of the photoelectric effect (for which Albert Einstein, who first explained it in detail, won his Nobel Prize [not for Relativity which was a much greater achievement]; his discovery was, however, a key step in the development of quantum physics). This, simply stated, says that there will be an emission of negative particles (electrons) when a negatively charged plate of some appropriate light-sensitive material is subjected to a beam of photons. The electrons can then be made to flow as a current from the plate, are collected, and then counted as a signal. A key point: The magnitude of the electric current produced (number of photoelectrons per unit time) is directly proportional to the light intensity. Thus, changes in the electric current can be used to measure changes in the photons (numbers; intensity) that strike the plate (detector) during a given time interval. The kinetic energy of the released photoelectrons varies with frequency (or wavelength) of the impinging radiation. But, different materials undergo photoelectric effect release of electrons over different wavelength intervals; each has a threshold wavelength at which the phenomenon begins and a longer wavelength at which it ceases.

No comments: