Wednesday, June 4, 2008

Water Harvesting Systems in India

Tankas
Tankas (small tank) are underground tanks, found traditionally in most Bikaner houses. They are built in the main house or in the courtyard. They were circular holes made in the ground, lined with fine polished lime, in which raiwater was collected. Tankas were often beautifully decorated with tiles, which helped to keep the water cool. The water was used only for drinking. If in any year there was less than normal rainfall and the tankas did not get filled, water from nearby wells and tanks would be obtained to fill the household tankas. In this way, the people of Bikaner were able to meet their water requirements. The tanka system is also to be found in the pilgrim town of Dwarka where it has been in existence for centuries. It continues to be used in residential areas, temples, dharamshalas and hotels.


Khadin
A khadin, also called a dhora, is an ingenious construction designed to harvest surface runoff water for agriculture. Its main feature is a very long (100-300 m) earthen embankment built across the lower hill slopes lying below gravelly uplands. Sluices and spillways allow excess water to drain off. The khadin system is based on the principle of harvesting rainwater on farmland and subsequent use of this water-saturated land for crop production.



First designed by the Paliwal Brahmins of Jaisalmer, western Rajasthan in the 15th century, this system has great similarity with the irrigation methods of the people of Ur (present Iraq) around 4500 BC and later of the Nabateans in the Middle East. A similar system is also reported to have been practised 4,000 years ago in the Negev desert, and in southwestern Colorado 500 years ago.







Vav / vavdi / Baoli / Bavadi

Traditional stepwells are called vav or vavadi in Gujarat, or baolis or bavadis in Rajasthan and northern India. Built by the nobility usually for strategic and/or philanthropical reasons, they were secular structures from which everyone could draw water. Most of them are defunct today.

The construction of stepwells date from four periods: Pre-Solanki period (8th to 11th century CE); Solanki period (11th to 12th century CE); Vaghela period (mid-13th to end-14th century CE); and the Sultanate period (mid-13th to end-15th century CE).
Sculptures and inscriptions in stepwells demonstrate their importance to the traditional social and cultural lives of people.

Stepwell locations often suggested the way in which they would be used. When a stepwell was located within or at the edge of a village, it was mainly used for utilitarian purposes and as a cool place for social gatherings. When stepwells were located outside the village, on trade routes, they were often frequented as resting places. Many important stepwells are located on the major military and trade routes from Patan in the north to the sea coast of Saurashtra. When stepwells were used exclusively for irrigation, a sluice was constructed at the rim to receive the lifted water and lead it to a trough or pond, from where it ran through a drainage system and was channelled into the fields.

A major reason for the breakdown of this traditional system is the pressure of centralisation and agricultural intensification.


Source:Making Water Everybody's Business

Ahar Pynes
This traditional floodwater harvesting system is indigenous to south Bihar.
In south Bihar, the terrain has a marked slope -- 1 m per km -- from south to north. The soil here is sandy and does not retain water. Groundwater levels are low. Rivers in this region swell only during the monsoon, but the water is swiftly carried away or percolates down into the sand. All these factors make floodwater harvesting the best option here, to which this system is admirably suited.

An ahar is a catchment basin embanked on three sides, the 'fourth' side being the natural gradient of the land itself. Ahar beds were also used to grow a rabi (winter) crop after draining out the excess water that remained after kharif (summer) cultivation.
Pynes are articifial channels constructed to utilise river water in agricultural fields. Starting out from the river, pynes meander through fields to end up in an ahar. Most pynes flow within 10 km of a river and their length is not more than 20 km.

The ahar-pyne system received a death-blow under the nineteenth-century British colonial regime. The post-independent state was hardly better. In 1949, a Flood Advisory Committee investigating continuous floods in Bihar's Gaya district came to the conclusion that "the fundamental reason for recurrence of floods was the destruction of the old irrigational system in the district."

Of late, though, some villages in Bihar have taken up the initiative to re-build and re-use the system. One such village is Dihra.
It is a small village 28 km southwest of Patna city. In 1995, some village youths realised that they could impound the waters of the Pachuhuan (a seasonal stream passing through the village that falls into the nearby river Punpun) and use its bed as a reservoir to meet the village's irrigation needs. Essentially, this meant creating an ahar-pyne system
After many doubts, the village powers-that-be gave the go-ahead. Money was collected and work began in May 1995. After a month of shramdaan (voluntary labour) the villagers completed their work mid-June.
Their efforts have borne fruit. By 2000 AD, the ahar was irrigating 80 ha of land. The people grow two cereal crops and one crop of vegetables every year. The returns from the sale of what they produce are good. The village is no longer a poor one.



Bengal's Inundation Channel
Bengal once had an extraordinary system of inundation canals. Sir William Willcocks, a British irrigation expert who had also worked in Egypt and Iraq, claimed that inundation canals were in vogue in the region till about two centuries ago. Floodwater entered the fields through the inundation canals, carrying not only rich silt but also fish, which swam through these canals into the lakes and tanks to feed on the larva of mosquitoes. This helped to check malaria in this region. According to Willcocks, the ancient system of overflow irrigation had lasted for thousands of years. Unfortunately, during the Afghan-Maratha war in the 18th century and the subsequent British conquest of India, this irrigation system was neglected, and was never revived.

According to Willcocks, the distinguishing features of the irrigation system were:

1.) the canals were broad and shallow, carrying the crest waters of the river floods, rich in fine clay and free from coarse sand;

2.) the canals were long and continuous and fairly parallel to each other, and at the right distance from each other for purposes of irrigation;

3.) irrigation was performed by cuts in the banks of the canals, which were closed when the flood was over.
Dungs or Jampois
Dungs or Jampois are small irrigation channels linking rice fields to streams in the Jalpaiguri district of West Bengal.


Cheruvu
Cheruvu are found in Chitoor and Cuddapah districts in Andhra Pradesh. They are reservoirs to store runoff. Cheruvu embankments are fitted with thoomu (sluices), alugu or marva or kalju (flood weir) and kalava (canal).




Kohli Tanks
The Kohlis, a small group of cultivators, built some 43,381 water tanks in the district of Bhandara, Maharashtra, some 250-300 years ago. These tanks constituted the backbone of irrigation in the area until the government took them over in the 1950s. It is still crucial for sugar and rice irrigation. The tanks were of all sizes, often with provisions to bring water literally to the doorstep of villagers.



Bhanadaras
These are check dams or diversion weirs built across rivers. A traditional system found in Maharashtra, their presence raises the water level of the rivers so that it begins to flow into channels. They are also used to impound water and form a large reservoir.
Where a bandhara was built across a small stream, the water supply would usually last for a few months after the rains.
They are built either by villagers or by private persons who received rent-free land in return for their public act
Most Bandharas are defunct today. A very few are still in use.



Phad
The community-managed phad irrigation system, prevalent in northwestern Maharashtra, probably came into existence some 300-400 years ago. The system operated on three rivers in the Tapi basin - Panjhra, Mosam and Aram - in Dhule and Nasik districts (still in use in some places here).


The system starts with a bandhara (check dam or diversion-weir) built across a rivers. From the bandharas branch out kalvas (canals) to carry water into the fields. The length of these canals varies from 2-12 km. Each canal has a uniform discharge capacity of about 450 litres/second. Charis (distributaries) are built for feeding water from the kalva to different areas of the phad. Sarangs (field channels) carry water to individual fields. Sandams (escapes), along with kalvas and charis, drain away excess water. In this way water reaches the kayam baghayat (agricultural command area), usually divided into four phads (blocks).



The size of a phad can vary from 10-200 ha, the average being 100-125 ha. Every year, the village decides which phads to use and which to leave fallow. Only one type of crop is allowed in one phad. Generally, sugarcane is grown in one or two phads; seasonal crops are grown in the others. This ensures a healthy crop rotation system that maintains soil fertility, and reduces the danger of waterlogging and salinity.

The phad system has given rise to a unique social system to manage water use.




Kere
Tanks, called kere in Kannada, were the predominant traditional method of irrigation in the Central Karnataka Plateau, and were fed either by channels branching off from anicuts (chech dams) built across streams, or by streams in valleys. The outflow of one tank supplied the next all the way down the course of the stream; the tanks were built in a series, usually situated a few kilometres apart. This ensured a) no wastage through overflow, and b) the seepage of a tank higher up in the series would be collected in the next lower one.





The Ramtek model has been named after water harvesting structures in the town of Ramtek, Maharashtra. A scientific analysis revealed an intricate network of groundwater and surface waterbodies, intrinsically connected through surface and underground canals. A fully evolved system, this model harvested runoff through tanks, supported by high yielding wells and structures like baories, kundis, and waterholes. This system, intelligently designed to utlise every raindrop falling in the watershed area is disintegrating due to neglect and ignorance.

Constructed and maintained mostly by malguzars (landowners), these tanks form a chain, extending from the foothills to the plains, conserving about 60-70 per cent of the total runoff. Once tanks located in the upper reaches close to the hills were filled to capacity, the water flowed down to fill successive tanks, generally through interconnecting channels. This sequential arrangement generally ended in a small waterhole to store whatever water remained unstored.

The presence of the Ramtek ridge in the middle, having a steep slope on both sides, results in quick runoffs and little percolation. This might have led the residents of the southern plains of the Ramtek hills to construct different types of water conservation structures (like tanks) where they could trap the maximum





Zings
Zings are water harvesting structures found in Ladakh. They are small tanks, in which collects melted glacier water.
Essential to the system is the network of guiding channels that brings the water from the glacier to the tank. As glaciers melt during the day, the channels fill up with a trickle that in the afternoon turns into flowing water. The water collects towards the evening, and is used the next day.
Souce: http://www.rainwaterharvesting.org/Rural/Traditional2.htm#zing

No comments: